The structural basis of serpin polymerization studied by hydrogen/deuterium exchange and mass spectrometry.

نویسندگان

  • Yuko Tsutsui
  • Barbara Kuri
  • Tanusree Sengupta
  • Patrick L Wintrode
چکیده

The serpinopathies are a group of inherited disorders that share as their molecular basis the misfolding and polymerization of serpins, an important class of protease inhibitors. Depending on the identity of the serpin, conditions arising from polymerization include emphysema, thrombosis, and dementia. The structure of serpin polymers is thus of considerable medical interest. Wild-type alpha(1)-antitrypsin will form polymers upon incubation at moderate temperatures and has been widely used as a model system for studying serpin polymerization. Using hydrogen/deuterium exchange and mass spectrometry, we have obtained molecular level structural information on the alpha(1)-antitrypsin polymer. We found that the flexible reactive center loop becomes strongly protected upon polymerization. We also found significant increases in protection in the center of beta-sheet A and in helix F. These results support a model in which linkage between serpins is achieved through insertion of the reactive center loop of one serpin into beta-sheet A of another. We have also examined the heat-induced conformational changes preceding polymerization. We found that polymerization is preceded by significant destabilization of beta-sheet C. On the basis of our results, we propose a mechanism for polymerization in which beta-strand 1C is displaced from the rest of beta-sheet C through a binary serpin/serpin interaction. Displacement of strand 1C triggers further conformational changes, including the opening of beta-sheet A, and allows for subsequent polymerization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Unfolding of 1-Antitrypsin Probed by Hydrogen-Deuterium Exchange Coupled with Mass Spectrometry*□S

The native state of 1-antitrypsin ( 1AT), a member of the serine protease inhibitor (serpin) family, is considered a kinetically trapped folding intermediate that converts to a more stable form upon complex formation with a target protease. Although previous structural and mutational studies of 1AT revealed the structural basis of the native strain and the kinetic trap, the mechanism of how the...

متن کامل

Structural Analysis of Diheme Cytochrome c by Hydrogen–Deuterium Exchange Mass Spectrometry and Homology Modeling

A lack of X-ray or nuclear magnetic resonance structures of proteins inhibits their further study and characterization, motivating the development of new ways of analyzing structural information without crystal structures. The combination of hydrogen-deuterium exchange mass spectrometry (HDX-MS) data in conjunction with homology modeling can provide improved structure and mechanistic prediction...

متن کامل

The Z Mutation Alters the Global Structural Dynamics of α1-Antitrypsin

α1-Antitrypsin (α1AT) deficiency, the most common serpinopathy, results in both emphysema and liver disease. Over 90% of all clinical cases of α1AT deficiency are caused by the Z variant in which Glu342, located at the top of s5A, is replaced by a Lys which results in polymerization both in vivo and in vitro. The Glu342Lys mutation removes a salt bridge and a hydrogen bond but does not effect t...

متن کامل

On-tissue Direct Monitoring of Global Hydrogen/Deuterium Exchange by MALDI Mass Spectrometry: Tissue Deuterium Exchange Mass Spectrometry (TDXMS).

Hydrogen/deuterium exchange mass spectrometric (H/DXMS) methods for protein structural analysis are conventionally performed in solution. We present Tissue Deuterium Exchange Mass Spectrometry (TDXMS), a method to directly monitor deuterium uptake on tissue, as a means to better approximate the deuterium exchange behavior of proteins in their native microenvironment. Using this method, a differ...

متن کامل

Probing the non-covalent structure of proteins by amide hydrogen exchange and mass spectrometry.

The rates at which hydrogens located at peptide amide linkages in proteins undergo isotopic exchange when a protein is exposed to D2O depend on whether these amide hydrogens are hydrogen bonded and whether they are accessible to the aqueous solvent. Hence, amide hydrogen exchange rates are a sensitive probe for detecting changes in protein conformation and dynamics. Hydrogen exchange rates in p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 45  شماره 

صفحات  -

تاریخ انتشار 2008